2019
DOI: 10.3390/pr7120865
|View full text |Cite
|
Sign up to set email alerts
|

Perfume Encapsulation via Vapor Induced Phase Separation

Abstract: In this study we explored the implementation of the vapor induced phase separation (VIPS) to produce cellulose acetate microcapsules for the encapsulation of a complex mix of fragrances. VIPS is a technique used for membrane preparation, but barely mentioned for microencapsulation. We compared the products from VIPS and a more common microencapsulation process, the immersion precipitation technique (IPS). The capsules prepared via VIPS show a core-shell structure with a thin polymeric shell surrounding the int… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 23 publications
0
3
0
Order By: Relevance
“…A complex mix of fragrances have been encapsulated in cellulose acetate microcapsules via the VIPS technique. The obtained capsules had a core-shell architecture, high encapsulation capacity and stability up to one year at room temperature, showing no fragrance diffusion without external stimuli at a dry state [ 39 ].…”
Section: Methods Of Preparation For Micro/nanoencapsulation Of Flamentioning
confidence: 99%
“…A complex mix of fragrances have been encapsulated in cellulose acetate microcapsules via the VIPS technique. The obtained capsules had a core-shell architecture, high encapsulation capacity and stability up to one year at room temperature, showing no fragrance diffusion without external stimuli at a dry state [ 39 ].…”
Section: Methods Of Preparation For Micro/nanoencapsulation Of Flamentioning
confidence: 99%
“…The third step is to initiate phase separation by immersion of the cast polymer in a coagulation bath containing the non-solvent. Other methods that have been used to induce phase separation is non-solvent vapor [63]. Ammendola and colleagues [63] used the phase inversion technique to prepare fragrance loaded cellulose acetate microcapsules.…”
Section: Phase Inversionmentioning
confidence: 99%
“…Other methods that have been used to induce phase separation is non-solvent vapor [63]. Ammendola and colleagues [63] used the phase inversion technique to prepare fragrance loaded cellulose acetate microcapsules. They then compared the vapor induced phase separation with immersion induced phase separation.…”
Section: Phase Inversionmentioning
confidence: 99%