Subchondral bone changes, characterized by increased bone turnover and vascularity, are believed to stimulate progression and pain in knee osteoarthritis (OA). The objective of this study was to evaluate the bone perfusion in knee OA using quantitative dynamic contrast enhanced MRI (DCE-MRI). Design: Unicompartmental knee OA patients were included and underwent 3 Tesla DCE-MRI and T2weighted MRI. Quantitative DCE-MRI analysis of Ktrans and Kep, representing perfusion parameters, was performed to evaluate differences between the most and least affected knee compartment. First, DCE-MRI parameter differences between epimetaphyseal and subchondral bone in both femur and tibia were assessed. Second, DCE-MRI parameters in subchondral bone marrow lesions (BMLs) were compared to surrounding subchondral bone without BMLs. Results: Twenty-three patients were analyzed. Median Ktrans and Kep in epimetaphyseal bone were significantly higher (p < 0.05) in the most affected (Ktrans: 0.014; Kep: 0.054 min À1 ) compared to least affected (Ktrans: 0.010; Kep: 0.016 min À1 ) compartment. For subchondral bone, DCE-MRI parameters were significantly higher (p < 0.05) in the most affected (Ktrans: 0.019; Kep: 0.091 min À1 ) compared to least affected (Ktrans: 0.014; Kep: 0.058 min À1 ) compartment as well. Subchondral BMLs detected on fat-saturated T2weighted images were present in all patients. Median Ktrans (0.091 vs 0.000 min À1 ) and Kep (0.258 vs 0.000 min À1 ) were significantly higher within subchondral BMLs compared to surrounding subchondral bone without BMLs (p < 0.001). Conclusions: Increased perfusion parameters in epimetaphyseal bone, subchondral bone and BMLs are observed in unicompartmental knee OA. BMLs likely account for most of the effect of the higher bone perfusion in knee OA.