Spinal cord injury (SCI) is an incurable condition in which the brain is disconnected partially or completely from the periphery. Mainly SCI are traumatic and are due to traffic, domestic or sport accidents. To date SCI are incurable and let, most of the time, the patients with a permanent loss of sensitive and motor functions. Therefore, since several decades researchers tried to develop treatments to cure SCI. Among them, recently, our lab have demonstrated that in mice, repetitive trans-spinal magnetic stimulation (rTSMS) can, after SCI, modulate the lesion scar and can induce functional locomotor recovery non-invasively. These results are promising, however before to translate them to Humans it is important to reproduce them in a more clinically relevant model. Indeed, SCI do not lead to the same cellular events in mice and Humans. In particular, SCI in Humans induce the formation of cystic cavities. That is why we propose here to validate the effects of rTSMS in rat, animal model in which SCI lead to the formation of cystic cavities, after penetrating and contusive SCI. To do so, several techniques including immunohistochemical, behavioral and MRI have been performed. Our results demonstrate that rTSMS, in both SCI models, modulates the lesion scar by decreasing the formation of cystic cavities and by improving axonal survival. Moreover, rTSMS, in both models, enhances functional locomotor recovery. Altogether, our study describes that rTSMS exerts positive effects after SCI in rats. This study is a further step towards the use of this treatment in Humans.