Spontaneous repair or treatment-induced recovery after spinal cord injury (SCI) is very limited and might be related to extramedullary alterations that have only briefly been documented. Here we report on the morphological changes of the spinal subarachnoid space (SAS) in a clinically relevant model of SCI. Anesthetized rats were subjected either to mild or severe spinal cord contusion at T9. Spine blocks from the site of injury and adjacent segments were harvested at acute (1 h and 1 day [d]), subacute (3 and 7 d), and chronic (1 and 3 months) stages post-injury. Histopathology and morphometry at each decalcified vertebral level were assessed. At acute and subacute stages, reduction of SAS lumen was observed after both mild and severe injuries. Acutely, after severe injuries, SAS occlusion was associated mainly with cord swelling and subarachnoid hematomas; a trend for dural sac constriction was observed for mild injuries. At 7 d, cord swelling diminished in both instances, but dural sac constriction increased for severe injuries. At early stages, in the epicenter and vicinity, histopathology revealed compression of neurovascular elements within the SAS, which was more intense in severe than in mild injuries. In the chronic stage, SAS lumen increased notably, mostly from cord atrophy, despite dural sac constriction. Myelograms complemented observations made on SAS lumen permeability. Post-traumatic arachnoiditis occurred mainly in animals with severe injury. In conclusion, early extramedullary SAS changes described here might be expected to produce alterations in cerebrospinal fluid (CSF) dynamics and cord blood perfusion, thereby contributing to the pathophysiology of SCI and becoming novel targets for treatment.