The purpose of this study was to reproduce and extend an earlier investigation of the effects of human exposure to combined, 60-Hz electric and magnetic fields. This paper presents the neurobehavioral results. Thirty men participated in one training session and four testing sessions. Subjects were randomly assigned to two groups. The 18 subjects in Group I were exposed (9 kV/m, 20 microT) and sham exposed in two counterbalanced orders. In Group II, half of 12 subjects were exposed (9 kV/m, 20 microT) every session, and the remaining half were sham exposed every session. The study was doubly blinded. Measures of cardiac interbeat interval, event-related brain potentials, and performance were obtained before, during, and after exposures. As in the earlier study, exposure to the combined field resulted in a statistically significant slowing of heart rate, in changes in late components of event-related brain potentials, and in decreased errors on a choice reaction-time task. In addition, field effects on several other measures approached statistical significance. The physiological measures obtained during exposure indicated that effects were greatest soon after the field was switched on, and again when it was switched off. The data indicate that changes in exposure level may be more important than duration of exposure for producing effects in human beings.