Single-photon emission computed tomography (SPECT) has been a mainstay of nuclear medicine practice for several decades. More recently, combining the functional imaging available with SPECT and the anatomic imaging of computed tomography (CT) has gained more acceptance and proved useful in many clinical situations. Most vendors now offer integrated SPECT/CT systems that can perform both functions on one gantry and provide fused functional and anatomic data in a single imaging session. In addition to allowing anatomic localization of nuclear imaging findings, SPECT/CT also enables accurate and rapid attenuation correction of SPECT studies. These attributes have proved useful in many cardiac, general nuclear medicine, oncologic, and neurologic applications in which the SPECT results alone were inconclusive. Optimal clinical use of this rapidly emerging imaging modality requires an understanding of the fundamental principles of SPECT/CT, including quality control issues as well as potential pitfalls and limitations. The long-term clinical and economic effects of this technology have yet to be established.