Alongside angiogenesis and lymphangiogenesis, neurogenesis also occurs within the cancer microenvironment. Neurogenesis is a complex process involving multiple factors, among which nerve growth factor (NGF) possesses the dual biological roles of neuron nutrition and axon growth promotion. Thus, NGF might be a key molecule involved in regulating cancer-related neurogenesis, which could play a crucial role in the signal transmission system that controls nerve growth in tumors, and enhances the abilities of migration, invasion and metastasis of tumor cells. The present study aimed to construct differential expression plasmids of NGF, in order to detect whether NGF has a vital role in neurogenesis in breast cancer cells. In the present study, 92 clinical cases of breast cancer were collected and immunohistochemical analysis was performed to verify the existence of neurons in the breast cancer microenvironment. Furthermore, recombinant NGF lentiviral overexpression, knockout and silencing plasmids were constructed, and whether NGF has an effect on neuron growth was preliminarily confirmed, indicating that the successfully constructed plasmids could be used to verify the roles of NGF in cancer-associated neurogenesis.