The development of a subharmonic three-dimensional instability mode in a vortex street is investigated both numerically and experimentally. The flow past a ring is considered as a test case, as a previous stability analysis has predicted that for a range of aspect ratios, the first-occurring instability of the vortex street is subharmonic. For the flow past a circular cylinder, the development of three-dimensional flow in the vortex street is known to lead to turbulent flow through the development of spatio-temporal chaos, whereas subharmonic instabilities have been shown to cause a route to chaos through the development of a period-doubling cascade. The three-dimensional vortex street in the flow past a ring is analysed to determine if a subharmonic instability can alter the route to turbulence for a vortex street.A linear stability analysis and non-axisymmetric computations are employed to compute the flow past a ring with an aspect ratio ${\sc ar}\,{=}\,5$, and comparisons with experimental dye visualizations are included to verify the existence of a subharmonic mode in the wake. Computations at higher Reynolds numbers confirm that the subharmonic instability does not initiate a period-doubling cascade in the wake.