2006
DOI: 10.1016/j.jnt.2005.05.007
|View full text |Cite
|
Sign up to set email alerts
|

Périodes de formes modulaires de poids 1

Abstract: On construit la théorie des périodes pour les formes modulaires de poids 1, qui étend la théorie classique pour les formes de poids supérieur, et la théorie des périodes pour les formes de Maass. On transporte les structures usuelles sur les formes modulaires dans l'espace des périodes (produit scalaire de Petersson, opérateurs de Hecke). On donne une interprétation cohomologique de l'isomorphisme de périodes, et on étend la construction des périodes aux formes non paraboliques. Enfin, on montre que la période… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0

Year Published

2006
2006
2018
2018

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(7 citation statements)
references
References 11 publications
0
7
0
Order By: Relevance
“…discusses higher-weight modular symbols and applies modular symbols to study Shafarevich-Tate groups (see also [Aga00]). Martin's thesis [Mar01] is about an attempt to study an analogue of analytic modular symbols for weight 1. Gabor Wiese's thesis [Wie05] uses modular symbols methods to study weight 1 modular forms modulo p. Lemelin's thesis [Lem01] discusses modular symbols for quadratic imaginary fields in the context of p-adic analogues of the Birch and Swinnerton-Dyer conjecture.…”
Section: Applicationsmentioning
confidence: 99%
“…discusses higher-weight modular symbols and applies modular symbols to study Shafarevich-Tate groups (see also [Aga00]). Martin's thesis [Mar01] is about an attempt to study an analogue of analytic modular symbols for weight 1. Gabor Wiese's thesis [Wie05] uses modular symbols methods to study weight 1 modular forms modulo p. Lemelin's thesis [Lem01] discusses modular symbols for quadratic imaginary fields in the context of p-adic analogues of the Birch and Swinnerton-Dyer conjecture.…”
Section: Applicationsmentioning
confidence: 99%
“…See also [92]. Martin [87] uses similar methods in the context of holomorphic modular forms of weight 1. A relation between the period functions of Lewis and the hyperfunctions associated to Maass forms was explored in [10], the ideas in which were expanded in [34,35,37].…”
Section: Remarks On the Literaturementioning
confidence: 99%
“…Since it is known that ψ r ∈ QM m−r λ−2r (Γ ) for 0 ≤ r ≤ m (see e.g. [5]), we can consider the complex linear map for each k ≥ 0.…”
Section: Liftings Of Quasimodular Formsmentioning
confidence: 99%