The presence of (first and second orders) polarization mode dispersion (PMD), chromatic dispersion, and initial chirp makes effects on the propagated pulses in single mode fiber. Nowadays, there is not an accurate mathematical formula that describes the pulse shape in the presence of these effects. In this work, a theoretical study is introduced to derive a generalized formula. This formula is exactly approached to mathematical relations used in their special cases. The presence of second-order PMD (SOPMD) will not affect the orthogonality property between the principal states of polarization. The simulation results explain that the interaction of the SOPMD components with the conventional effects (chromatic dispersion and chirp) will cause a broadening/narrowing and shape distortion. This changes depend on the specified values of SOPMD components as well as the present conventional parameters.