Immortal cells perpetuate the rises and falls of proliferation that are progressively damped in mortal long-term cultured cells. For immortal rat hepatoma Fao cells, similar waves of proliferation occurred about every 3-4 wk. Under the same conditions, embryonic human fibroblasts and transformed but not immortalized embryonic fibroblasts display similarly recurring proliferation waves that progressively decrease in amplitude until senescence of the lines. In addition, strains of diploid normal human skin fibroblasts cultured under different culture conditions display a similar time-pattern of proliferation. Although the amplitude and baseline of these fluctuations are characteristic for each cell line, a common point was marked slow down in proliferation after every sequence of about 25 population doublings for all cells. Renewed proliferation waves of Fao cells allow about 22-23 additional population doublings each. Normal embryonic fibroblast culture and its transformed counterpart accumulate about 30 and 60 population doublings, respectively, before senescence. Normal fibroblast strains accumulate about 25 population doublings over their entire life spans. This halt in proliferation after every stretch of about 25 population doublings may correspond to a structural or functional stop following attrition of telomeric DNA. This putative stop may be bypassed once in transformed embryonic cells and repetitively in immortal cells. In support of this hypothesis, we observed rapid telomere shortening, in two steps, during divisions of mortal embryonic cells, and maintenance of long telomeres in immortal Fao cells, which may indicate episodic repair of telomeres. Alternatively, such maintenance of long telomeres may reflect survival and successive clonal growth of rare cells with long telomeres. We suggest that the balance between telomere attrition and repair processes regulates the waves of proliferation.