We consider a uniformly magnetized sphere that moves without friction in a plane in response to the field of a second, identical, fixed sphere, making elastic hard-sphere collisions with this sphere. We seek periodic solutions to the associated nonlinear equations of motion. We find closed-form mathematical solutions for small-amplitude modes and use these to characterize and validate our large-amplitude modes, which we find numerically. Our Runge-Kutta integration approach allows us to find 1243 distinct periodic modes with the free sphere located initially at its stable equilibrium position. Each of these modes bifurcates from the finite-amplitude radial bouncing mode with infinitesimalamplitude angular motion and supports a family of states with increasing amounts of angular motion. These states offer a rich variety of behaviors and beautiful, symmetric trajectories, including states with up to 157 collisions and 580 angular oscillations per period.Published under license by AIP Publishing. https://doi.panels (a)-(d). The length scales for all four trajectories are the same and are set by the size of the gray (fixed) sphere.