2007
DOI: 10.1103/physreve.75.056214
|View full text |Cite
|
Sign up to set email alerts
|

Periodic orbit theory and the statistical analysis of scaling quantum graph spectra

Abstract: The explicit solution to the spectral problem of quantum graphs found recently in [20], is used to produce the exact periodic orbit theory description for the probability distributions of spectral statistics, including the distribution for the nearest neighbor separations, s n = k n − k n−1 , and the distribution of the spectral oscillations around the average, δk n = k n −k n .

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
3

Year Published

2007
2007
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(8 citation statements)
references
References 54 publications
0
5
0
3
Order By: Relevance
“…рассматривавшиеся в работе [35]. В [13]- [15] было также показано, что в силу определенных аналитических свойств экспоненциальной суммы вида (11) [15], [36], [37] в качестве k…”
Section: спектральное уравнениеunclassified
See 2 more Smart Citations
“…рассматривавшиеся в работе [35]. В [13]- [15] было также показано, что в силу определенных аналитических свойств экспоненциальной суммы вида (11) [15], [36], [37] в качестве k…”
Section: спектральное уравнениеunclassified
“…в котором x -это набор из N P − 1 независимых равномерно распределенных случайных величин, а коэффициенты C Распределение значений δf (0) = δf (0) x в таком случае получается из выражения [35], [40]…”
Section: явные распределения для квантовых уровнейunclassified
See 1 more Smart Citation
“…where η (j+1) is a bounded function of the fluctuations on the j+1 level, η (j+1) = η (j+1) δ (j+1) [25][26][27]. Also in general, the harmonic expansion ( 21) is different from the periodic orbit expansion of (19), C As a result, the "integrable spectrum" k (r)…”
Section: Complexity Of Quantum Graph Spectramentioning
confidence: 99%
“…At the same time, multi-electron systems with arbitrary interactions yield the same universal results as one-electron systems 37 , suggesting that the single electron models are suitable vehicles for studying the relationships of graph geometry and topology to the scaling properties of the nonlinear optical tensors. The single electron quantum graph is a well-studied, exactly solvable model of quantum chaos 38,39,40,41,42,43,44,45 . With this in mind, we initiated our studies of the elementary QG model for nonlinear optics by focusing first on undressed edges and calculated the off-resonance first (β ijk ) and second (γ ijkl ) hyperpolarizability tensors (normalized to their maximum values) of elementary graphical structures, such as wires, closed loops, and star vertices 34,46 and to investigate the relationship between the topology and geometry of a graph and its nonlinear optical response through its hyperpolarizability tensors 35 .…”
Section: Introductionmentioning
confidence: 99%