A discrete time non-autonomous two-species competitive system with delays is proposed, which involves the influence of many generations on the density of species population. Sufficient conditions for permanence of the system are given. When the system is periodic, by using the continuous theorem of coincidence degree theory and constructing a suitable Lyapunov discrete function, sufficient conditions which guarantee the existence and global attractivity of positive periodic solutions are obtained. As an application, examples and their numerical simulations are presented to illustrate the feasibility of our main results.