We study the well‐posedness of the fractional degenerate differential equations with finite delay false(Pαfalse):Dαfalse(Mufalse)false(tfalse)=Aufalse(tfalse)+Fut+ffalse(tfalse),false(0≤t≤2π,0.33emα>0false) on Lebesgue–Bochner spaces Lpfalse(double-struckT;Xfalse), periodic Besov spaces Bp,qsfalse(double-struckT;Xfalse) and periodic Triebel–Lizorkin spaces Fp,qsfalse(double-struckT;Xfalse), where A and M are closed linear operators on a Banach space X satisfying D(A)⊂D(M), F is a bounded linear operator from Lpfalse([−2π,0];Xfalse) (resp. Bp,qsfalse([−2π,0];Xfalse) and Fp,qsfalse([−2π,0];Xfalse)) into X, where ut is given by utfalse(sfalse)=ufalse(t+sfalse) when s∈[−2π,0] and t∈[0,2π]. Using known operator‐valued Fourier multiplier theorems, we give necessary or sufficient conditions for the well‐posedness of (Pα) in the above three function spaces.