2004
DOI: 10.1007/s10582-004-9791-1
|View full text |Cite
|
Sign up to set email alerts
|

Periodic Supersymmetric Toda Lattice Hierarchy

Abstract: The zero-curvature representation of the periodic fermionic two-dimensional Toda lattice equations is constructed. It is shown that their reduction to the one-dimensional space is N = 4 supersymmetric and possesses a bi-Hamiltonian structure. Their r-matrix description, monodromy matrix, and spectral curves are discussed.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2005
2005
2006
2006

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 13 publications
0
2
0
1
Order By: Relevance
“…In what follows we assume suitable boundary conditions for the functions f (m) k,j in order the main property of supertraces str[O, O} = 0 (10) be satisfied for the case of the generalized graded bracket (5).…”
Section: Space Of Difference Operatorsmentioning
confidence: 99%
“…In what follows we assume suitable boundary conditions for the functions f (m) k,j in order the main property of supertraces str[O, O} = 0 (10) be satisfied for the case of the generalized graded bracket (5).…”
Section: Space Of Difference Operatorsmentioning
confidence: 99%
“…where the R-matrix is a linear map R: g → g such that the bracket (19) satisfies the properties (8-10). One can verify that the Jacobi identities (10) for the bracket (19) can equivalently be rewritten in terms of the generalized graded bracket (7)…”
Section: R-matrix Formalismmentioning
confidence: 99%
“…Пять лет назад в работе [1], посвященной 75-летию академика Анатолия Алексеевича Логунова, мы рассмотрели квазиклассический предел суперсимметричной решеточной иерархии Тоды. За прошедшие годы мы неоднократно возвращались к этому кругу идей [2]- [4] и нашли неожиданные применения их в ряде разделов современной теоретической и математической физики. Выяснилось, в частности, что квазиклассический (бездисперсионный) предел решеточной иерархии Тоды связан с интегрируемой структурой, лежащей в основе полевой теории открытых (супер)струн на плоском геометрическом фоне [3], [4].…”
Section: посвящается 80-летию академика анатолия алексеевича логуноваunclassified