2017
DOI: 10.1016/j.ymssp.2016.06.022
|View full text |Cite
|
Sign up to set email alerts
|

Periodically correlated random processes: Application in early diagnostics of mechanical systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
17
0
5

Year Published

2019
2019
2021
2021

Publication Types

Select...
5
4

Relationship

1
8

Authors

Journals

citations
Cited by 47 publications
(22 citation statements)
references
References 26 publications
0
17
0
5
Order By: Relevance
“…Javorskyj et al [145] proposed the covariance and spectral characteristics of periodically correlated random processes to describe the state of rotary mechanical systems. Igba et al [146] used RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes.…”
Section: Other Fault Frequency Based Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Javorskyj et al [145] proposed the covariance and spectral characteristics of periodically correlated random processes to describe the state of rotary mechanical systems. Igba et al [146] used RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes.…”
Section: Other Fault Frequency Based Methodsmentioning
confidence: 99%
“…[127] Fast computation of the kurtogram Li et al [132] Particle Filter + Kurtogram Wang et al [125] Minimum entropy de-convolution + Fast Kurtogram Cong et al [129] Spectral kurtosis + autoregressive model Jeong et al [130] Spectral kurtosis Chen et al [133] Mean envelope Kurtosis + envelope analysis Jia et al [131] Maximum correlated kurtosis deconvolution Masmoudi et al [134] Time synchronous averaging Dong et al [135] Frequency-shifted bispectrum Zhou et al [136] Cyclic bispectrum Dong et al [137] Wigner-Ville spectrum Yuan et al [138] Multi-fractal analysis Siegel et al [139] Tachometer-less synchronously averaged envelope Park et al [140] Minimum variance cepstrum Fu et al [141] Adaptive fuzzy-means clustering Li et al [142] Informative frequency band Liu et al [143] Adaptive SR + quantum particle swarm Liao et al [144] Improved genetic algorithm Kedadouche et al [124] Approximate entropy + sample entropy + Lempel-Ziv Complexity. Javorskyj et al [145] Periodically correlated random processes Igba et al [146] Root mean square (RMS) + peak values Shao et al [147] RMS in angle domain Sharma et al [148] Modified time synchronous averaging Jin et al [149] Mahalanobis distance…”
Section: Authors Methodologiesmentioning
confidence: 99%
“…Нині методи вібродіагностування елементів роторного обладнання зазнають бурхливого розвитку у світі і засновані на поглибленому вивченні періодичних і майже періодичних нестаціонарних випадкових процесів і відповідних моделей [1]. Здійснюється удосконалення й доповнення стандартних спектральних, спектральночасових методів обробки сигналів, які базуються на класичному алгоритмі швидкого перетворення Фур'є (ШПФ) [2 -5].…”
Section: вступunclassified
“…Reliable condition monitoring techniques are essential when performing condition-based maintenance on expensive rotating machine assets [1,2]. Advanced signal processing [3][4][5][6][7][8][9][10][11][12][13] and sophisticated supervised machine learning techniques [14][15][16][17][18][19][20][21][22][23] are actively investigated to improve the condition monitoring task. Deep learning techniques have also recently been used to not only infer the condition of the machine, but also to extract features from the raw dataset i.e.…”
Section: Introductionmentioning
confidence: 99%