Energy transport in 1-dimensional oscillator arrays has been extensively studied to date in the conservative case, as well as under weak viscous damping. When driven at one end by a sinusoidal force, such arrays are known to exhibit the phenomenon of supratransmission, i.e. a sudden energy surge above a critical driving amplitude. In this paper, we study 1-dimensional oscillator chains in the presence of hysteretic damping, and include nonlinear stiffness forces that are important for many materials at high energies. We first employ Reid's model of local hysteretic damping, and then study a new model of nearest neighbor dependent hysteretic damping to compare their supratransmission and wave packet spreading properties in a deterministic as well as stochastic setting. The results have important quantitative differences, which should be helpful when comparing the merits of the two models in specific engineering applications.