We develop a mathematical model that describes the tumour-immune interaction and the effect on it of pulsed immunotherapy, based on the administration of adoptive cellular immunotherapy (ACI) combined with interleukin-2 (IL-2). The stability conditions for the tumour-free periodic solution are provided with different frequencies of ACI applications and IL-2 infusions. Furthermore, the effects of period, dosage and times of drug deliveries on the amplitudes of the tumour-free periodic solution were investigated. The most feasible immunotherapy strategy was determined by comparing immunotherapy with ACI treatment with or without IL-2. However, to investigate how to enhance the efficacy of chemotherapy (radiotherapy) and reduce its sideeffects, we developed a model involving periodic applications of immunotherapy with chemotherapy (radiotherapy) applied only when the density of the tumour reached a given threshold. The results revealed that the initial densities, the effector cell: tumour cell ratios, the periods T and a given critical number of tumour cells C T are crucial for cancer treatment, which confirms that it is important to customise treatment strategies for individual patients.