CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120 IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/ CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4 + T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.chemokine receptors | oligomer formation | FRET/BRET F or HIV-1 to enter a target cell, the viral envelope glycoprotein gp120 must interact with a set of cell surface molecules that include the primary receptor, CD4 (1), and a chemokine receptor (CCR5 or CXCR4) that acts as a coreceptor (2, 3). These molecules form CD4/chemokine receptor complexes, as deduced from coprecipitation data for CXCR4 or CCR5 with CD4 (4-8).Most HIV-1 variants isolated from newly infected individuals use CCR5 and CD4 to enter host cells; these M-tropic R5 strains are predominant in acute and asymptomatic phases of HIV infection. CD4 + T helper type 1 (Th1) cells, which express high CCR5 levels (9, 10), are implicated in maintaining asymptomatic status (11, 12). The "viral shift" from R5 to T-tropic X4 HIV-1 strains correlates with AIDS progression (13,14). X4 strains infect mainly CD4 + Th2 cells, which express little CCR5 and whose CXCR4 levels resemble those of Th1 cells (15,16), which suggests that cell susceptibility to HIV-1 infection depends on the CD4/coreceptor ratio and on receptor levels during cell activation and/or differentiation (17). CXCR4 and CCR5 are present as homodimers and heterodimers at the plasma membrane (18)(19)(20). In addition, gp120-mediated CD4/CXCR4 and CD4/CCR5 association and clustering is reported (21-23). Nonetheless, little is known of how CCR5 expression influences the CD4/CXCR4 interaction, or of the molecular basis that underlies the differences in X4 strains infection relative to CCR5 levels at the cell surface.Here, we identify CD4/CXCR4/CCR5 oligomers at the cell membrane, even in the absence of ligands. CCR5 expression in these complexes modifies the heterodimeric CD4/CXCR4 conformation and blocks gp120 IIIB binding, without altering binding of the CXCR4 ligand CXCL12 and its subsequent signaling. gp120 IIIB -triggered LIMK1 activation, cofilin dephosphorylation, and the actin cytoskeleton rearrangement necessary for cell-cell fusion were impeded in CD4/CXCR4/CCR5-expressing c...