Background/Aims: The biological effects of periodic mechanical stress on the mitogenesis of chondrocytes have been studied extensively over the past few years. However, the mechanisms underlying the ability of chondrocytes to sense and respond to mechanical stimuli remain to be determined. In the current study, we analyzed the mechanisms by which periodic mechanical stress is translated into biochemical signals and verified the key role of non-integrin mechanosensors including Caveolin-1 (Cav-1), and insulin-like growth factor-1 receptor (IGF-1R) in chondrocyte proliferation. Methods: Two steps were undertaken in the experiment. In the first step, the cells were maintained under static conditions or periodic mechanical stress for 0 h and 1 h prior to Western blot analysis. In the second step, the cells were pretreated with short hairpin RNA (shRNA) targeted to Cav-1 or IGF-1R or control scrambled shRNA. Moreover, they were pretreated with their selective inhibitors methyl β-cyclodextrin (MCD) or Linsitinib (OSI-906). They were maintained under static conditions or periodic mechanical stress for 1 h prior to Western blot analysis, and for 3 days, 8 h per day, prior to direct cell counting and CCK-8 assay, respectively. Results: Periodic mechanical stress significantly induced sustained phosphorylation of Cav-1 at Tyr 14 and IGF-1R at Tyr 1135/1136 . Proliferation was inhibited by pretreatment with Cav-1 inhibitor MCD and by shRNA targeted to Cav-1 in chondrocytes in response to periodic mechanical stress. Meantime, MCD and shRNA targeted to Cav-1 also attenuated IGF-1R, and extracellular signal-regulated kinase (ERK)1/2 activation. In addition, inhibiting IGF-1R activity by Linsitinib and shRNA targeted to