The gastrointestinal tract constantly communicates with the environment, receiving and processing a wide range of information. The contents of the gastrointestinal tract and the gastrointestinal tract generate mechanical and chemical signals, which are essential for regulating digestive function and feeding behavior. There are many receptors here that sense intestinal contents, including nutrients, microbes, hormones, and small molecule compounds. In signal transduction, ion channels are indispensable as an essential component that can generate intracellular ionic changes or electrical signals. Ion channels generate electrical activity in numerous neurons and, more importantly, alter the action of non-neurons simply and effectively, and also affect satiety, molecular secretion, intestinal secretion, and motility through mechanisms of peripheral sensation, signaling, and altered cellular function. In this review, we focus on the identity of ion channels in chemosensing and mechanosensing in the gastrointestinal tract.