Background. The Windover mortuary pond dates to the Early Archaic period (6,800-5,200 years ago) and constitutes one of the earliest archaeological sites with intact and well-preserved human remains in North America. Unlike many prehistoric egalitarian hunter-gatherers, the Windover people may not have practiced a sex-based division of labor, rather they may have shared the load. We explore how mobility and subsistence, as reconstructed from archaeological data, influenced hand and foot bone morphology at Windover. Methods. We took length and width measurements on four carpal bones, four tarsal bones, and loadbearing tarsal areas (calcaneus load arm, trochlea of the talus). We analyzed lateralization using side differences in raw length and width measurements. For other hypothesis testing, we used log transformed length-width ratios to mitigate the confounding effects of sexual dimorphism and trait size variation; we tested between-sex differences in weight-bearing (rear foot) and shock-absorbing (mid foot) tarsal bones and between-sex differences in carpal bones. Results. We identified no significant between-sex differences in rear and midfoot areas, suggesting similar biomechanical stresses. We identified no significant between-sex differences in carpal bones but the test was under-powered due to small sample sizes. Finally, despite widespread behavioral evidence on contemporary populations for human hand and foot lateralization, we found no evidence of either handedness or footedness. Discussion. The lack evidence for footedness was expected due its minimal impact on walking gait but the lack of evidence for handedness was surprising given that ethnographic studies have shown strong handedness in hunter-gatherers during tool and goods manufacture. The reconstructed activity patterns suggested both sexes engaged in heavy load carrying and a shared division of labor. Our results support previous findings-both sexes had stronger weight-bearing bones. While male shock-absorbing bones exhibited a trend towards greater relative width (suggesting greater comparative biomechanical stress