In the present article, an attempted have been made to study the behavior of boundary layer viscous fluid flow and heat transfer containing some nanosized solid particles flowing through a permeable porous medium. The problem was first modeled into a coupled system of nonlinear partial differential equations of conservation of mass, momentum and nanoparticle concentration. The system of coupled nonlinear boundary layer partial differential equations governing the flowing fluid momentum and heat transfer characteristics are reduced to a new simplified coupled nonlinear system of ordinary differential equations by means of a suitable similarity transformation. The transformed set of nonlinear coupled ordinary differential equations is than solved numerically by means of the fourth order numerical scheme the Runge-Kutta shooting method. The effects of important involved parameters that control the flow field and heat transfer characteristics, that is the viscosity parameter, the convection parameter, the Porosity parameter, the Prandtl number and the Lewis number have been obtained and discussed. Numerical solutions for velocity and temperature are sketched and graphically analyzed. The graphical results observed are indicating that by increasing the values of the non-dimensional viscosity parameter, the dimension less fluid flow profile increases, while for increasing values of the nanoparticles Brownian motion parameter, the nanoparticle concentration profile increases.