2023
DOI: 10.1017/jfm.2022.989
|View full text |Cite
|
Sign up to set email alerts
|

Permeability sets the linear path instability of buoyancy-driven disks

Abstract: The prediction of trajectories of buoyancy-driven objects immersed in a viscous fluid is a key problem in fluid dynamics. Simple-shaped objects, such as disks, present a great variety of trajectories, ranging from zig-zag to tumbling and chaotic motions. Yet, similar studies are lacking when the object is permeable. We perform a linear stability analysis of the steady vertical path of a thin permeable disk, whose flow through the microstructure is modelled via a stress-jump model based on homogenization theory… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 42 publications
0
0
0
Order By: Relevance