Introduction
The effect of fullerene nanoemulsion on skin wrinkle repair in an animal model was evaluated using ultrasonic images processing.
Methods
Wrinkles were created in C57BL6 mice during 35 days of UVB radiation. Then, to investigate the therapeutic effect of fullerene nanoemulsions, mice were divided into three groups of control, UVB radiation, and treatment with fullerene nanoemulsion. Stable fullerene nanoemulsions were prepared using shear equalization. The therapeutic effect of fullerene nanoemulsion was investigated by extracting the skin thickness and mechanical parameters. Histology studies were performed to confirm the reliability of the treatment.
Results
A significant decrease was observed in the thickness of the epidermis and dermis layers (43% and 36%), Young modulus (27%), and the shear modulus (20%) of the skin on day 28 of the fullerene nanoemulsion treatment. Skin stiffness obtained by tensiometry on day 28 of the treatment showed a 48% reduction in the treatment group compared with the control group. Histological results confirmed the effect of fullerene nanoemulsions on wrinkle repair.
Conclusion
The healing effect of fullerene nanoemulsion in wrinkle repair was confirmed. To study the skin repair, parameters including Young modulus, the shear modulus, and skin layer thickness can be calculated using ultrasonic images processing.