2021
DOI: 10.1017/s0305004121000438
|View full text |Cite
|
Sign up to set email alerts
|

Permutable quasiregular maps

Abstract: Let f and g be two quasiregular maps in $\mathbb{R}^d$ that are of transcendental type and also satisfy $f\circ g =g \circ f$ . We show that if the fast escaping sets of those functions are contained in their respective Julia sets then those two functions must have the same Julia set. We also obtain the same conclusion about commuting quasimeromorphic functions with infinite backward orbit of infinity. Furthermore we show that permutable quasiregular fun… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?