1979
DOI: 10.1016/0012-365x(79)90182-1
|View full text |Cite
|
Sign up to set email alerts
|

Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'euler et nombres de Genocchi

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
98
0
1

Year Published

1984
1984
2013
2013

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 99 publications
(101 citation statements)
references
References 9 publications
2
98
0
1
Order By: Relevance
“…We will show in Section 7 that the two kinds of paths are in bijection with signed permutations, using variants of classical bijections of Françon and Viennot [15], Foata and Zeilberger [14]. We obtain two other interpretations of B n (y, t, q) where y follows a descent statistic and q a pattern statistic.…”
Section: Definitions and Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…We will show in Section 7 that the two kinds of paths are in bijection with signed permutations, using variants of classical bijections of Françon and Viennot [15], Foata and Zeilberger [14]. We obtain two other interpretations of B n (y, t, q) where y follows a descent statistic and q a pattern statistic.…”
Section: Definitions and Resultsmentioning
confidence: 99%
“…In this reference, the first author obtains refinements of two bijections originally given by Françon and Viennot [15], Foata and Zeilberger [14]. In the case of signed permutations, we will see that each of these two bijections has two variants, corresponding to the two kinds of paths obtained in the previous section.…”
Section: Interpretation Of B N (Y T Q) Via Weighted Motzkin Pathsmentioning
confidence: 99%
See 1 more Smart Citation
“…-Motzkin numbers: this famous sequence of numbers arises in the solution of the cases S = {x, y, xȳ} and S = {x,x, y,ȳ, xȳ,xy} (Propositions 9 and 10). The first problem is equivalent to the enumeration of involutions with no decreasing subsequence of length 4, and the occurrence of Motzkin numbers follows from restricting a bijection of Françon and Viennot [24]. The solution to the second problem is, to our knowledge, new, and deserves a more combinatorial solution.…”
Section: Explain Closed Form Expressionsmentioning
confidence: 99%
“…Numérotons les sommets internes d'un arbre binaire b de taille n par les entiers 1,2, .. .,n en ordre préfixe (d'autres ordres peuvent convenir aussi, voir [6 ] et [7 ]). Associons à b le chemin c = n(b) de la façon suivante : pour Ï=1,2, .. .,n-1 posons ) = c(f)+l si les deux fils du sommet i sont internes ) -c(i) -1 si les deux fils du sommet i sont externes (i est feuille) ) = c(f) sinon et ce palier est coloré par + (resp.…”
Section: Une Relation De Récurrence Pour Les Nombres De Strahlerunclassified