The interface energetics‐modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double‐layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4− can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4− distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long‐term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.