Thousands of man-made chemicals are annually released into the environment by agriculture, transport, industries, and other human activities. In general, chemical analysis of environmental samples used to assess the pollution status of a specific ecosystem is complicated by the complexity of the mixture, and in some cases by the very low toxicity thresholds of chemicals present. In that sense, a proteomics approach, capable of detecting subtle changes in the level and structure of individual proteins within the whole proteome in response to the altered surroundings, has obvious applications in the field of ecotoxicology. In addition to identifying new protein biomarkers, it can also help to provide an insight into underlying mechanisms of toxicity. Despite being a comparatively new field with a number of caveats, proteomics applications have spread from microorganisms and plants to invertebrates and vertebrates, gradually becoming an established technology used in environmental research. This review article highlights recent advances in the field of environmental proteomics, mainly focusing on experimental approaches with a potential to understand toxic modes of action and to identify novel ecotoxicological biomarkers.