Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. Here, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a pre-clinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased antigen-specific antibody titers. 17-HDHA increased the number of antibody-secreting cells in vitro as well as the number of HA-specific antibody secreting cells present in the bone marrow. Importantly, the 17-HDHA-mediated increased antibody production was more protective against live pH1N1 influenza infection in mice. This is the first report on the biological effects of omega-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants.