The detection of an oxygen-atom photoexchange process of N-nitrosamines is reported. The photolysis of four nitrosamines (N-nitrosodiphenylamine 1, N-nitroso-N-methylaniline 2, N-butyl-N-(4-hydroxybutyl)nitrosamine 3, and N-nitrosodiethylamine 4) with ultraviolet light was examined in an (18)O2-enriched atmosphere in solution. HPLC/MS and HPLC-MS/MS data show that (18)O-labeled nitrosamines were generated for 1 and 2. In contrast, nitrosamines 3 and 4 do not exchange the (18)O label and instead decomposed to amines and/or imines under the conditions. For 1 and 2, the (18)O atom was found not to be introduced by moisture or by singlet oxygen [(18)((1)O2 (1)Δg)] produced thermally by (18)O-(18)O labeled endoperoxide of N,N'-di(2,3-hydroxypropyl)-1,4-naphthalene dipropanamide (DHPN(18)O2) or by visible-light sensitization. A density functional theory study of the structures and energetics of peroxy intermediates arising from reaction of nitrosamines with O2 is also presented. A reversible head-to-tail dimerization of the O-nitrooxide to the 1,2,3,5,6,7-hexaoxadiazocane (30 kcal/mol barrier) with extrusion of O═(18)O accounts for exchange of the oxygen atom label. The unimolecular cyclization of O-nitrooxide to 1,2,3,4-trioxazetidine (46 kcal/mol barrier) followed by a retro [2 + 2] reaction is an alternative, but higher energy process. Both pathways would require the photoexcitation of the nitrooxide.