Background
Increased epigenetic age acceleration (EAA) in survivors of childhood cancer is associated with specific treatment exposures, unfavorable health behaviors, and presence of certain chronic health conditions. To better understand inter-individual variability, we investigated the genetic basis underlying EAA.
Methods
Genome-wide association studies of EAA based on multiple epigenetic clocks (Hannum, Horvath, PhenoAge, and GrimAge) were performed. MethylationEPIC BeadChip array and whole-genome sequencing data were generated with blood-derived DNA from participants in the St. Jude Lifetime Cohort Study (discovery: 2138 pre-existing and 502 newly generated data, all survivors; exploratory: 282 community controls). Linear regression models were fit for each epigenetic age against the allelic dose of each genetic variant, adjusting for age at sampling, sex, and cancer treatment exposures. Fixed-effects meta-analysis was used to combine summary statistics from two discovery data sets. LD (Linkage disequilibrium) score regression was used to estimate single-nucleotide polymorphism (SNP)-based heritability.
Results
For EAA-Horvath, a genome-wide significant association was mapped to the SELP gene with the strongest SNP rs732314 (meta-GWAS: β=0.57, P=3.30×10-11). Moreover, the stratified analysis of the association between rs732314 and EAA-Horvath showed a substantial heterogeneity between children and adults (meta-GWAS: β=0.97 vs. 0.51, I2=73.1%) as well as between survivors with and without chest/abdominal/pelvic-RT exposure (β=0.64 vs. 0.31, I2=66.3%). For EAA-Hannum, an association was mapped to the HLA locus with the strongest SNP rs28366133 (meta-GWAS: β=0.78, P=3.78×10-11). There was no genome-wide significant hit for EAA-PhenoAge or EAA-GrimAge. Interestingly, among community controls, rs732314 was associated with EAA-Horvath (β=1.09, P=5.43×10-5), whereas rs28366133 was not associated with EAA-Hannum (β=0.21, P=0.49). The estimated heritability was 0.33 (SE=0.20) for EAA-Horvath and 0.17 (SE=0.23) for EAA-Hannum, but close to zero for EAA-PhenoAge and EAA-GrimAge.
Conclusions
We identified novel genetic variants in the SELP gene and HLA region associated with EAA-Horvath and EAA-Hannum, respectively, among survivors of childhood cancer. The new genetic variants in combination with other replicated known variants can facilitate the identification of survivors at higher risk in developing accelerated aging and potentially inform drug targets for future intervention strategies among vulnerable survivors.