2022
DOI: 10.1371/journal.pone.0270596
|View full text |Cite
|
Sign up to set email alerts
|

Personalised pose estimation from single-plane moving fluoroscope images using deep convolutional neural networks

Abstract: Measuring joint kinematics is a key requirement for a plethora of biomechanical research and applications. While x-ray based systems avoid the soft-tissue artefacts arising in skin-based measurement systems, extracting the object’s pose (translation and rotation) from the x-ray images is a time-consuming and expensive task. Based on about 106’000 annotated images of knee implants, collected over the last decade with our moving fluoroscope during activities of daily living, we trained a deep-learning model to a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance