Music streaming services increasingly incorporate different ways for users to browse for music. Next to the commonly used "genre" taxonomy, nowadays additional taxonomies, such as mood and activities, are often used. As additional taxonomies have shown to be able to distract the user in their search, we looked at how to predict taxonomy preferences in order to counteract this. Additionally, we looked at how the number of categories presented within a taxonomy influences the user experience. We conducted an online user study where participants interacted with an application called "Tune-A-Find". We measured taxonomy choice (i.e., mood, activity, or genre), individual differences (e.g., personality traits and music expertise factors), and different user experience factors (i.e., choice difficulty and satisfaction, perceived system usefulness and quality) when presenting either 6-or 24-categories within the picked taxonomy. Among 297 participants, we found that personality traits are related to music taxonomy preferences. Furthermore, our findings show that the number of categories within a taxonomy influences the user experience in different ways and is moderated by music expertise. Our findings can support personalized user interfaces in music streaming services. By knowing the user's personality and expertise, the user interface can adapt to the user's preferred way of music browsing and thereby mitigate the problems that music listeners are facing while finding their way through the abundance of music choices online nowadays.