Obstructive sleep apnea (OSA) is a highly heterogeneous disorder, with diverse pathways to disease, expression of disease, susceptibility to co‐morbidities and response to therapy, and is ideally suited to precision medicine approaches. Clinically, the content of the information‐rich polysomnogram (PSG) is not currently fully utilized in determining patient management. Novel PSG parameters such as hypoxic burden, pulse transit time, cardiopulmonary coupling and the frequency representations of PSG sensor signals could predict a variety of cardiovascular disease, cancer and neurodegeneration co‐morbidities. The PSG can also be used to identify key pathophysiological parameters such as loop gain, arousal threshold and muscle compensation which can enhance understanding of the causes of OSA in an individual, and thereby guide choices on therapy. Machine learning methods performing their own parameter extraction coupled with large PSG data sets offer an exciting opportunity for discovering new links between the PSG variables and disease outcomes. By exploiting existing and emerging analytical methods, the PSG may offer a pathway to personalized management for OSA.