2022
DOI: 10.3390/jcm11051259
|View full text |Cite
|
Sign up to set email alerts
|

Personalized Prediction of Kidney Function Decline and Network Analysis of the Risk Factors after Kidney Transplantation Using Nationwide Cohort Data

Abstract: We developed a machine-learning-based model that could predict a decrease in one-year graft function after kidney transplantation, and investigated the risk factors of the decreased function. A total of 4317 cases were included from the Korean Organ Transplant Registry (2014–2019). An XGBoost model was trained to predict the recipient’s one-year estimated glomerular filtration rate (eGFR) below 45 mL/min/1.73 m2 using 112 pre- and peri-transplantation variables. The network of model factors was drawn using int… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 46 publications
0
0
0
Order By: Relevance