2020
DOI: 10.1371/journal.pone.0228725
|View full text |Cite|
|
Sign up to set email alerts
|

Personalized risk stratification through attribute matching for clinical decision making in clinical conditions with aspecific symptoms: The example of syncope

Abstract: Background Risk stratification is challenging in conditions, such as chest pain, shortness of breath and syncope, which can be the manifestation of many possible underlying diseases. In these cases, decision tools are unlikely to accurately identify all the different adverse events related to the possible etiologies. Attribute matching is a prediction method that matches an individual patient to a group of previously observed patients with identical characteristics and known outcome. We used syncope as a parad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 24 publications
0
1
0
1
Order By: Relevance
“…Объединение этих данных с индивидуальной геномикой пациента позволяет определить генетические основы клинических проявлений и вариабельности ответа на лечение. Авторы считают, что биобанки будут важным ресурсом в неотложной медицине [26].…”
Section: внедрение принципов пм в медицину критических состоянийunclassified
“…Объединение этих данных с индивидуальной геномикой пациента позволяет определить генетические основы клинических проявлений и вариабельности ответа на лечение. Авторы считают, что биобанки будут важным ресурсом в неотложной медицине [26].…”
Section: внедрение принципов пм в медицину критических состоянийunclassified
“…A meta-analysis utilizing individual patient data failed to find additive value of the OESIL, EGSYS, and SFSR beyond clinical judgement to predict serious adverse outcomes in the ED or at 10 and 30 days [ 51 ]. Solbiati et al used attribute matching—a tool that allows for personalized risk prediction by computer generated modeling—in an effort to refine 10-day risk prediction of serious adverse events, as compared to clinical judgment and a regression model [ 52 ]. The matching cohort included 3388 patients from five previous prospective trials.…”
Section: Risk Stratificationmentioning
confidence: 99%