Gait asymmetries are commonly observed in neurological populations and linked to decreased gait velocity, balance decrements, increased fall risk, and heightened metabolic cost. Interventions designed to improve gait asymmetries have varying methods and results. The purpose of this systematic review was to investigate non-pharmacological interventions to improve gait asymmetries in neurological populations. Keyword searches were conducted using PubMed, CINAHL, and Academic Search Complete. The search yielded 14 studies for inclusion. Gait was assessed using 3D motion capture systems (n = 7), pressure-sensitive mats (e.g., GAITRite; n = 5), and positional sensors (n = 2). The gait variables most commonly analyzed for asymmetry were step length (n = 11), stance time (n = 9), and swing time (n = 5). Interventions to improve gait asymmetries predominantly used gait training techniques via a split-belt treadmill (n = 6), followed by insoles/orthoses (n = 3). The literature suggests that a wide range of methods can be used to improve spatiotemporal asymmetries. However, future research should further examine kinematic and kinetic gait asymmetries. Additionally, researchers should explore the necessary frequency and duration of various intervention strategies to achieve the greatest improvement in gait asymmetries, and to determine the best symmetry equation for quantifying gait asymmetries.