Pancreatic islet transplantation is a therapeutic option for achieving physiologic regulation of plasma glucose in Type 1 diabetic patients. At the same time, mesenchymal stem cells (MSCs) have demonstrated their potential in controlling graft rejection, the most fearsome complication in organ/tissue transplantation. MSCs can interact with innate and adaptive immune system cells either through direct cell-cell contact or through their secretome including exosomes. In this review, we discuss current findings regarding the graft microenvironment of pancreatic islet recipient patients and the crucial role of MSCs operation as cell managers able to control the immune system to prevent rejection and promote endogenous repair. We also discuss how challenging stressors, such as oxidative stress and impaired vasculogenesis, may jeopardize graft outcomes. In order to face these adverse conditions, we consider either hypoxia-exposure preconditioning of MSCs or human stem cells with angiogenic potential in organoids to overcome islets’ lack of vasculature. Along with the shepherding of carbon nanotubes-loaded MSCs to the transplantation site by a magnetic field, these studies look forward to exploiting MSCs stemness and their immunomodulatory properties in pancreatic islet transplantation.