Background and Purpose: Limited optimization was clinically applicable for reducing missed diagnosis, misdiagnosis and inter-reader variability in pulmonary nodule diagnosis. We aimed to propose a deep learning-based algorithm and a practical strategy to better stratify the risk of pulmonary nodules, thus reducing medical errors and optimizing the clinical workflow.
Materials and Methods: A total of 2,348 pulmonary nodules (1,215 with lung cancer) containing screened nodules from National Lung Cancer Screening Trial (NLST) and incidentally detected nodules from Jinling Hospital (JLH) were used to train and evaluate a deep learning algorithm, Filter-guided pyramid network (FGP-NET). Internal and external test of FGP-NET were performed on two independent datasets (n=542). The performance of FGP-NET at Youden point which maximizing the Youden index was compared with 126 board-certificated radiologists. We further proposed Hierarchical Ordered Network ORiented Strategy (HONORS), which manipulates the emphasis either on sensitivity or specificity to target risk-stratified clinical scenarios, directly making decisions for some patients.
Results: FGP-NET achieved a high area under the curve (AUC) of 0.969 and 0.855 for internal and external testing, and was comparable or even outperformed the radiologists when considering sensitivity. HONORS-guided FGP-NET identified benign nodules with a high sensitivity (95.5%) in the screening scenario, and demonstrated satisfactory performance for the rest ambiguous nodules with 0.945 of AUC by the Youden point. FGP-NET also detected lung cancer with a high specificity of 94.5% in routine diagnostic scenario; an AUC of 0.809 was achieved for the rest nodules.
Conclusion: The combination of HONORS and FGP-NET provides well-organized stratification for pulmonary nodules and also offers the potential for reducing medical errors.