Abstract. In inertial confinement fusion (ICF) and high-energy density physics (HEDP), the most important manifestations of the hydrodynamic instabilities and other mixing processes involve lateral motion of the accelerated plasmas. In order to understand the experimental observations and to advance the numerical simulation codes to the point of predictive capability, it is critically important to accurately diagnose the motion of the dense plasma mass. The most advanced diagnostic technique recently developed for this purpose is the monochromatic x-ray imaging that combines large field of view with high contrast, high spatial resolution and large throughput, ensuring high temporal resolution at large magnification. Its application made it possible for the experimentalists to observe for the first time important hydrodynamic effects that trigger compressible turbulent mixing in laser targets, such as ablative Richtmyer-Meshkov (RM) instability, feedout, interaction of a RMunstable interface with rarefaction waves. It also helped to substantially improve the accuracy of diagnosing many other important plasma flows, ranging from laser-produced jets to electromagnetically driven wires in a Z-pinch, and to test various methods suggested for mitigation of the Rayleigh-Taylor instability. We will review the results obtained with the aid of this technique in ICF-HEDP studies at the Naval Research Laboratory and the prospects of its future applications.