2009
DOI: 10.1007/s00023-009-0015-x
|View full text |Cite
|
Sign up to set email alerts
|

Perturbation Method for Particle-like Solutions of the Einstein–Dirac Equations

Abstract: Abstract. The aim of this Note is to prove by a perturbation method the existence of solutions of the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state and with the electromagnetic coupling constant`e m´2 < 1. We show that the nondegenerate solution of Choquard's equation generates a branch of solutions of the Einstein-Dirac-Maxwell equations.Une méthode de perturbation pour les solutions localisées deséqua-tions d'Einstein-Dirac-Maxwe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
11
0
3

Year Published

2010
2010
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 13 publications
(14 citation statements)
references
References 6 publications
0
11
0
3
Order By: Relevance
“…In this Note, using the idea introduced by Ounaies for a class of nonlinear Dirac equations (see [1]) and adapted in [5] to the Einstein-Dirac equations, we obtain the following result. Theorem 1.1.…”
Section: Introductionmentioning
confidence: 83%
See 4 more Smart Citations
“…In this Note, using the idea introduced by Ounaies for a class of nonlinear Dirac equations (see [1]) and adapted in [5] to the Einstein-Dirac equations, we obtain the following result. Theorem 1.1.…”
Section: Introductionmentioning
confidence: 83%
“…Dans un papier récent [5], par une méthode de perturbation, on a montré de manière rigoureuse l'existence de solutions deséquations d'Einstein-Dirac pour un système statique,à symétrie sphérique de deux fermions dans unétat de singulet. Dans cette Note, on généralise ce résultat auxéquations d'Einstein-Dirac-Maxwell et on montre, dans le cas particulier d'un couplageélectromagnétique faible, l'existence des solutions obtenues numériquement par F. Finster, J. Smoller et ST. Yau dans [7].…”
Section: Version Française Abrégéeunclassified
See 3 more Smart Citations