This paper is devoted to the discussion of the exponential stability of a networked hyperbolic system with a circle. Our analysis extends an example by Bastin and Coron about the limits of boundary stabilizability of hyperbolic systems to the case of a networked system that is defined on a graph which contains a cycle. By spectral analysis, we prove that the system is stabilizable while the length of the arcs is sufficiently small. However, if the length of the arcs is too large, the system is not stabilizable. Our results are robust with respect to small perturbations of the arc lengths. Complementing our analysis, we provide numerical simulations that illustrate our findings.