Citation: LENDINEZ, S. ... et al, 2017. Effect of temperature on magnetic solitons induced by spin-transfer torque. Physical Review Applied, 7 (5), 054027.Additional Information:• This paper was accepted for publication in the jour- Spin-transfer torques in a nanocontact to an extended magnetic film can create spin waves that condense to form dissipative droplet solitons. Here we report an experimental study of the temperature dependence of the current and applied field thresholds for droplet soliton formation, as well as the nanocontact's electrical characteristics associated with droplet dynamics. Nucleation requires lower current densities at lower temperatures, in contrast to typical spin-transfer-torque-induced switching between static magnetic states. Magnetoresistance and electrical noise measurements (10 MHz-1 GHz) show that droplet solitons become more stable at lower temperature. These results are of fundamental interest in understanding the influence of thermal noise on droplet solitons and have implications for the design of devices using the spin-transfertorque effects to create and control collective spin excitations.