In this paper, we will obtain quantum work for a quantum scale five dimensional Myers-Perry black hole. Unlike heat represented by Hawking radiation, the quantum work is represented by a unitary information preserving process, and becomes important for black holes only at small quantum scales. It will be observed that at such short distances, the quantum work will be corrected by non-perturbative quantum gravitational corrections. We will use the Jarzynski equality to obtain this quantum work modified by non-perturbative quantum gravitational corrections. These non-perturbative corrections will also modify the stability of a quantum Myers-Perry black hole. We will define a quantum corrected information geometry by incorporating the non-perturbative quantum corrections in the information geometry of a Myers-Perry black hole. We will use several different quantum corrected effective information metrics to analyze the stability of a quantum Myers-Perry black hole.