We introduce and study a new general system of nonlinear variational inclusions involving generalizedm-accretive mappings in Banach space. By using the resolvent operator technique associated with generalizedm-accretive mappings due to Huang and Fang, we prove the existence theorem of the solution for this variational inclusion system in uniformly smooth Banach space, and discuss convergence and stability of a class of new perturbed iterative algorithms for solving the inclusion system in Banach spaces. Our results presented in this paper may be viewed as an refinement and improvement of the previously known results.