The seasonality and periodicity of infections, and the mechanisms underlying observed dynamics, can have implications for control efforts. This is particularly true for acute childhood infections. Among these, the dynamics of measles is the best understood and has been extensively studied, most notably in the UK prior to the start of vaccination. Less is known about the dynamics of other childhood diseases, particularly outside Europe and the US. In this paper, we leverage a unique dataset to examine the epidemiology of six childhood infections - measles, mumps, rubella, varicella, scarlet fever and pertussis - across 32 states in Mexico from 1985 to 2007. This dataset provides us with a spatiotemporal probe into the dynamics of six common childhood infections, and allows us to compare them in the same setting over the same time period. We examine three key epidemiological characteristics of these infections – the age profile of infections, spatiotemporal dynamics, and seasonality in transmission - and compare with predictions from existing theory and past findings. Our analysis reveals interesting epidemiological differences between the six pathogens, and variations across space. We find signatures of term time forcing (reduced transmission during the summer) for measles, mumps, rubella, varicella, and scarlet fever; for pertussis, a lack of term time forcing could not be rejected.