This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. Monophenylated poly(ether sulfone)s (Ph-PES) and diphenylated poly(ether sulfone)s (DiPh-PES), were synthesized as starting materials for the preparation of sulfonated polymers with well-defined chemical structure. Mild post-polymerization sulfonation conditions led to sulfonated Ph-PES (Ph-SPES) bearing acid groups on both the pendant phenyl group and the backbone, and sulfonated DiPh-PES (DiPh-SPES) bearing acid groups only on the two pendant phenyl groups. Both series of polymers had excellent mechanical properties, high glass transition temperatures, good thermal and oxidative stability, as well as good dimensional stability. It is interesting to note that exclusively pendant-phenyl-sulfonated (bissulfophenylated) DiPh-SPES copolymers possessed obviously better thermal and oxidative stability compared with the corresponding pendant-phenyl-sulfonated/main-chain-sulfonated Ph-SPES copolymers. The methanol permeability values of the membranes were in the range of 7.0 Â 10 À7 -9.4 Â 10 À8 cm 2 /s at 30 C, which is several times lower than that of Nafion 117. DiPh-SPES-50 and Ph-SPES-40 also exhibited high proton conductivity (approximately 0.13 S/cm at 100 C).