<p class="03Abstract">This article reports the synthesis of seven Zn(II) complexes containing <em>N</em>-acylhydrazone ligands (<strong>L1 </strong>to<strong> L7</strong>) and the assessment of their antioxidant. Microwave assisted-synthesis of ligands with ZnCl<sub>2</sub> in MeOH yielded tetrahedral Zn(II) complexes with a 1:2 metal: ligand ratio, characterized by HRMS, FTIR, and UV-Vis spectroscopy, thermal and electrochemical analyses, and DFT calculations. The <strong>(L3)<sub>2</sub>Zn</strong> complex exhibited the lowest thermal stability, and <strong>(L6)<sub>2</sub>Zn</strong> and <strong>(L7)<sub>2</sub>Zn</strong> were the most stable. XRD powder showed that all complexes have good crystallinity with crystalline dimensions ranging from 32 to 86 nm. Cyclic voltammetry of Zn(II) complexes indicated a reversible redox process for <strong>(L4)<sub>2</sub>Zn</strong> and an irreversible process for the remaining six complexes: <strong>(L1)<sub>2</sub>Zn </strong>to <strong>(L3)<sub>2</sub>Zn</strong> and <strong>(L5)<sub>2</sub>Zn</strong> to <strong>(L7)<sub>2</sub>Zn</strong>. Antioxidant activity of ligands and complexes was assessed by the DPPH method; the <strong>L7 </strong>ligand and corresponding <strong>(L7)<sub>2</sub>Zn</strong> complex exhibited good activity, IC<sub>50</sub> = 65.30 μmol.l<sup>-1 </sup>and 78.70 μmol.l<sup>-1</sup>, respectively, when compared with standard ascorbic acid. <strong></strong></p>